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Abstract 

Accurate and reliable monitoring of biomass in tropical forest has been a challenging task 
because a large proportion of forest is inaccessible. For effective implementation of REDD-plus 
and fair benefit sharing, monitoring methodology should be based on scientifically robust 
estimation of sources and sinks to meet MRV requirements. Though there have been major 
advances in satellite remote sensing technologies in recent years, none of them have been able 
to overcome the saturation problem that makes it hard to detect forests with high above-ground 
biomass volume and assess degradation. The saturation problem in biomass estimation can be 
overcome by adopting airborne LiDAR, because laser pulses penetrate even through a dense 
multi-layered canopy and there is a strong correlation between LiDAR data and biomass. 
Integrating different remote sensing and field reference data provides an accurate, precise, and 
affordable monitoring solution for tropical forests. In this regard, a two-phase sampling scheme 
optimizes field data collection efforts for model calibration and assists with objective and efficient 
positioning of sample plots. In the second sampling phase, estimates for a set of LiDAR transects 
are available, and the radiometric properties of satellite imagery are applied to identify the best 
estimators for target variables. Such a method is proposed here. It integrates sample plots with 
LiDAR transects and satellite images, and it attains a relative RMSE of 25 to 35 percent in above-
ground biomass already on an area of 0.5 ha. Alternative methods, such as National Forest 
Inventories based on permanent sample plots, optical satellite imagery, and k-NN estimation or 
visual inspection, attain this error level only on areas of 100 ha or even more. Such high spatial 
resolution is crucial for awarding REDD credits to local forest owners. Arbonaut Ltd. has 
developed a forest inventory process and user-friendly tools (ArboLiDAR) to estimate above- and 
below-ground carbon stocks. The estimation process relies on a unified Bayesian statistical 
methodology, making it possible to incorporate various information sources such as direct 
measurements, quantities interpreted from remote sensing, and the results of modelling of carbon 
sinks such as below-ground carbon. These estimates can also be simply updated whenever new 
data becomes available. 
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Introduction 

Tropical forests play a very significant role in 
mitigating global climate change. While forests 
are estimated to sequestrate about 15% of 
global carbon emissions, global deforestation 
and forest degradation accounts for up to 20% 
of annual greenhouse gas emissions (Achard 
et al. 2007; Angelsen 2008). There has been 
significant progress on climate change 
mitigation options, such as the REDD-plus 
scheme (Reducing Emissions from 
Deforestation and Forest Degradation in 
Developing Countries), after the Fifteenth 
Conference of the Parties (COP15) of the 
United Nations Convention on Climate Change 
(UNFCCC) in December 2009. REDD-plus 
was able to make significant progress 
politically and financially despite the failure to 
reach a legally binding global pact on cutting 
greenhouse gases during the climate 
negotiations at the COP15. Discussion on 
climate change will continue, but it is already 
clear that tropical forests have great potential 
to mitigate global climate change. REDD-plus 
is a cost-effective, efficient and equitable 
approach to climate change mitigation 
worldwide and it is expected to be included in a 
post-2012 international emissions reduction 
treaty (Blom et al. 2010; Phelps et al. 2010). 
 
Accurate and reliable estimation of biomass in 
tropical forest has been a challenging task 
because a large proportion of forest area is 
inaccessible. Lack of reliable up-to-date data 
has been a fundamental obstacle to 
understanding the scale of deforestation and 
forest degradation, and to monitoring the 
extent of forest reduction (Springate-Baginski 
and Wollenberg 2010). The importance of 
remote sensing technology in the mapping of 
tropical forests to support the monitoring needs 
of REDD-plus has been growing. For effective 
implementation of REDD-plus and fair benefit 
sharing, the monitoring methodology should be 
based on scientifically robust estimation of 
sources and sinks to meet the monitoring, 
reporting and verification (MRV) requirements 
(Bottcher et al. 2009). Topographical 
complexity and the lack of availability of 
suitable remote sensing material are two main 
reasons for incorrect forest inventory data in 
tropical countries. Although there have been 
major advances in satellite remote sensing 
technology in recent years, none have been 
able to overcome the saturation problem that 
makes it difficult to detect forests with high 
above-ground biomass volume and to assess 
degradation (Næsset 2009). This has led 
researchers to develop robust methods by 

integrating different remote sensing materials, an 
approach that facilitates the direct calculation of 
quantitative estimates of forest attributes (Hollaus 
et al. 2006; Gonzalez et al.2010; Asner et al. 2010) 
that support REDD-plus monitoring. The present 
study is a demonstration of integrating data from 
various sources, such as ALS technology, satellite 
remote sensing, and field measurements for 
mapping tropical forest biomass.  
 

Airborne Laser Scanning (ALS) 

Airborne laser scanning, or LiDAR (Light Detection 
and Ranging), is an active remote sensing 
technique that permits observation of the vertical 
structure of forests. This ability distinguishes ALS 
from conventional remote sensing approaches. A 
sensor mounted on a fixed-wing plane or helicopter 
emits laser pulses towards the ground and records 
the elapsed time between beam launch and return 
signal registration (Gautam and Kandel 2010). 
Each laser hit is geo-referenced with 3-dimensional 
coordinate values. LiDAR data has a great 
advantage because laser pulses penetrate even 
through a dense multi-layered canopy and hence 
do not suffer from the saturation problem (Næsset 
2009). 
 

Satellite technology 

Satellite remote sensing can collect large amounts 
of image data over a wide geographical area with a 
high temporal frequency. Some forest attributes 
that are difficult to estimate from LiDAR data, such 
as species composition, are easy to interpret from 
satellite imagery. 
 

Advanced Land Observation Satellite (ALOS) 

ALOS was launched on January 24th, 2006 by 
JAXA (Japan Aerospace Exploration Agency). 
ALOS is able to cover the Earth’s surface over 
three times per year at 10-, 20-, and 100-meter 
spatial resolutions (Kellndorfer et al. 2007). ALOS 
is a satellite well-suited to monitor tropical forests, 
as it scans the Earth’s surface using both optical 
(multi-spectral and panchromatic bands) and radar 
sensors, which produces cloud-free imagery 
(LAPAN and JAXA 2009). The ALOS satellite is 
mounted with two optical sensors, AVNIR and 
PRISM, and carries a radar sensor, PALSAR, 
onboard. 
 

Landsat 7 

Landsat 7, the latest NASA satellite in the Landsat 
series, can produce an uninterrupted multispectral 



record of the Earth's land surface since 1972. 
Landsat 7 was launched in 1999 with a 16-day 
repeat cycle, and is equipped with the 
Enhanced Thematic Mapper Plus (ETM+) 
sensor. Landsat 7 data cover a swath width of 
185 km in eight different wavelength bands. 
The data are available in two spatial 
resolutions: 15m (pan) and 30m (ms), with 
improved radiometric calibration (Trigg et al. 
2006). 
 

Two-Phase Sampling with LiDAR 

A two-phase sampling scheme optimizes field 
data collection for model calibration through 
efficient field sample plot positioning. The first 
sampling phase is based on full coverage of 
satellite imagery and other ancillary data, and 
the subsequent second phase is based on ALS 
data and field measurements. In the first 
phase, a wall-to-wall map of broad categories, 
such as forest, non-forests and uncertain 
areas, is produced using satellite imagery. In 
the second phase, a sample of LiDAR 
transects is collected over the project area. 
The point cloud properties such as pulse 
height and density characterize variation in the 
forest structure and successional stage 
(Falkowski et al. 2009). Optimally, the whole 
range of structural variation is covered with 
field plot samples in the second phase for each 
stratum. Field sample data is used to calibrate 
statistical models based on LiDAR metrics. 
The estimates for LiDAR transects, which are 
highly accurate, are utilized as a reference 
when estimation is carried out for a complete 
wall-to-wall area covered with satellite data. 
 

ArboLiDAR Forest Inventory 

Arbonaut Ltd. has developed a forest inventory 
process and user-friendly tools. ArboLiDAR is 
an inventory process that integrates airborne 
laser scanning, field measurements, and 
satellite imagery with full geographical 
coverage for highly accurate estimates of bio-
physical forest attributes. Estimates with high 
spatial resolution guide operational forest 
management for effective maintenance and 
enhancement of above- and below-ground 
carbon stocks.  
 
The ArboLiDAR estimation process relies on a 
unified Sparse Bayesian regression (Tipping 
2001) that makes it possible to incorporate 
various information sources, such as direct 
measurements, quantities interpreted from 
remote sensing, and results of modelling of 
carbon sinks such as below-ground carbon. 

The Sparse Bayesian regression is a general, non-
parametric, locally linear Bayesian regression 
method (Junttila et al. 2008) that automatically 
determines the rank of an appropriate regression 
model based on the variance in measurements of 
the variable to be predicted (such as biomass), and 
the variable’s correlation with a set of LiDAR 
metrics and satellite image spectral features. With 
ArboLiDAR, Sparse Bayesian regression is 
conducted either on an estimation grid with cells of 
sample plot size, or on homogeneous micro-
stands, which are automatically generated by the 
stand delineation tool incorporated in ArboLiDAR 
that uses LiDAR height and density, as well as 
spectral and textural features, for accurate 
delineation.  
 

Study area, sensors and data 

The study area is situated in Vientiane, Lao PDR. 
The data was collected under the SUFORD Forest 
Monitoring Component. The SUFORD project was 
a bilateral co-operation between governments of 
Finland and Lao PDR. The leading company of the 
project was Indufor Ltd. Finland. The LiDAR survey 
area covered 25 000 hectares. LiDAR data and 
color-infrared (CIR) aerial images were collected 
with a Leica ALS 40 sensor and a Leica MP 39 
digital camera. The flight campaign took place 
between February 6th and 8th in 2009. A detailed 
list of parameters for LiDAR acquisition is 
presented in Table 1. The ALOS AVNIR-2 imagery 
was taken in September 2006 and the Landsat 7 
imagery was taken in November 2000. Using old 
satellite data provides a way to define accurate 
forest carbon baselines in the past with the method 
proposed here. 
 
A total of 328 sample plots were established 
across the study area with the help of the local 
officials from the Department of Forests and the 
District Agriculture and Forest Extension Offices. 
Local villagers were also involved in field data 
collection in Songkhone and Thapangthong 
districts. Sample plots were rectangular in shape 
with a dimension of 20 x 20 metres each. The 
location of each plot was recorded using Global 
Positioning System (GPS) handheld devices. 
 

Table 1: Parameters for LiDAR survey. 

Parameter Value 
Field of View (FOV) 30 degrees 
Sidelap 20% 
Point density 1/m2 

Flying altitude 2000 meters 
Speed 120 knots 
Sun position >20 degrees 
Optimal distance 19 + 1 trajectories 
Length of flying 410 km 
GPS base station 40 km apart 



Estimating biomass with datasets 
from various sources  

LiDAR sampling has been suggested as a 
feasible way to combine the accuracy of LiDAR 
with the coverage and affordability of satellite 
imagery (Næsset et al. 2009; Asner 2009). In 
our tests, the target area was covered by wall-
to-wall LiDAR for verification. For testing the 
integrated method proposed here, only every 
tenth LiDAR flight line was retained on which a 
sufficient number of sample plots was present, 
covering 10 percent of the area.  
 
In the first phase, the ArboLiDAR method was 
used to obtain accurate estimate of biomass 
for the LiDAR transects and an additional plot 
sample of surrogate plots was created to 
complement the field survey plots. In the 
second phase, the remaining 90 percent of the 
area was interpreted using satellite data alone, 
using both the real and the complementary 
sample as the teaching set. 
 

Mapping biomass for the LiDAR transects 

An accurate biomass map was created for the 
LiDAR transects using LiDAR, ALOS AVNIR 
and Landsat imagery (Figure 1). Features that 
correlated with the modelled data were 
extracted from LiDAR according to the method 
described by Næsset (2002). ALOS and 
LANDSAT bands were included directly, and a 
linearization transformation was performed on 
selected bands to make their response linear. 
Furthermore, red edge (Seager et al. 2005) 
was extracted from both ALOS and Landsat 
bands as 
 

redge = NIR – R 
 
and linearized. In total, 28 LiDAR and 19 
satellite features were included. The area of 
LiDAR transects was covered by a regular grid 
of 20 x 20 meter cells and estimated using the 
available field plots. The following targets were 
estimated: dominant height (m), dominant 
diameter (cm), basal area (m2/ha), total volume 
(m3/ha), stem biomass (tons/ha), above- and 
below-ground biomass (tons/ha), and above- 
and below-ground carbon (tons/ha).  
 
The estimation accuracy was assessed using 
leave-one-out cross-validation, in which the 
sample plot is estimated using all remaining 
sample plots and the estimation result is 
compared to the measured value.  
 
 

 

Figure 1: Stem biomass estimated from LiDAR, ALOS 
and Landsat data and field sample plots. 

Generating surrogate plot sample 

The original field sample was extended by 
generating additional samples, which we referred 
to as surrogate samples. In order to acquire plot 
sample that well represent the variation in biomass 
in the area, the new sample plots were placed 
randomly with probability proportional to the 
estimated biomass. The accurate estimates 
obtained from LiDAR and satellite data were taken 
as new ground truth and used in training the 
satellite-based models. 
 

Estimating above- and below-ground biomass 

Above- and below-ground biomass was calculated 
for the entire area using the features derived from 
ALOS and Landsat imagery. The surrogate plot 
sample was taken to train the model. 
 
Furthermore, micro-segments with mean area of 
0.4 and 1 hectare were generated for the study 
area. Vegetation height and density features 
derived from LiDAR were used in the segmentation 
process (Figure 2). The satellite-based estimates 
were aggregated into the segments and validated 
against the accurate biomass map. 
 

 
 

Figure 2: Micro-segments derived from LiDAR. The 
mean segment area is 0.4 ha. 

 

Results 

The biomass estimation using both LiDAR and 
satellite data resulted in 6.2% Root Mean Square 
Error (RMSE) for dominant diameter, 7.6% RMSE 



for dominant height, 16.4% for basal area and 
23.3% for total volume (Figure 3 and 4). RMSE 
for the remaining target variables is not 
reported as the variables were modelled from 
the volume and the error is therefore identical.  
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Figure 3: Root Mean Square Error of 

biomass estimates validated against the 
original field plots. 
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Figure 4: Scatterogram of measured and 

estimated stem biomass. 

 
The accurate biomass map was used for 
creating a surrogate sample that better 
describes the variation in the biomass. Most 
notably, areas with high biomass concentration 
were not well represented by the original 
sample plots, while the surrogate sample adds 
a significant amount of plots with total volume 
above 300 m3/ha (Figure 5).  
 

0 100 200 300 400 500

0
20

40
60

8
0

Total Volume (m3/ha)

F
re

qu
en

cy

 
Figure 5: Total volume histograms of original 
sample plots (black bars) and the surrogate 

sample (gray bars). 

 

At the plot level (the area of a single plot was 400 
m2), the satellite-based estimation of the entire 
area yielded RMSE of 19.2% for dominant 
diameter, 18.5% for dominant height, 26.5% for 
basal area and 34.4% for stem biomass when 
using the surrogate plots as a teaching set. This is 
in contrast to using the original field plots which do 
not fully describe biomass within the LiDAR 
transects and the RMSE of stem biomass reached 
39.7%. The estimation error drops dramatically 
when calculated at the scale of 0.4 and 1 hectare. 
For the 1-hectare segments, RMSE of dominant 
diameter was 8.3%, RMSE of dominant height 
9.21%, RMSE of basal area 19.5% and RMSE of 
stem biomass 23.9% (Figure 6). 
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Figure 6: Relative RMSE for satellite-based 

estimation. a) Plot-level, models trained using the 
original field sample. b) Plot-level, models trained 

on the surrogate plots, c) Segments with mean 
area 0.4 ha, models trained on the surrogate 

plots. d) Segments with mean area 1 ha, models 
trained on the surrogate plots. 

 
The costs of forest inventory relying on two-phase 
sampling are strongly scale-dependent and drop 
down to and below 10 US cents per hectare for 
national-scale projects (Figure 7). 
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Figure 7: The effect of scale-to-unit cost of 

biomass inventory when integrating a 10% LiDAR 
sample, field plot measurements, and optical 

satellite imagery. 

 



Discussion and conclusions 

Various studies have demonstrated that LiDAR 
technology has great potential for carbon stock 
estimation in tropical forests. LiDAR 
technology is well-suited to monitor forest 
degradation, as LiDAR helps to detect changes 
in forest canopy structure (Saramaki 2010). 
The integrated approach makes optimal use of 
different datasets in estimating tropical forest 
biomass (Hudak et al. 2002; Næsset 2002; 
Asner 2009). The possibility of correlating any 
signal (satellite, aerial image, or LiDAR) with 
timber volume or carbon stock depends on a 
strong correlation between the signal and 
biomass. Peuhkurinen et al. (2010) found a 
strong correlation between measured and 
predicted values when stem volume was 
estimated with LiDAR. The only prerequisite is 
that some pulses do reach the ground 
(Gonzalez et al. 2010), which is possible in 
closed canopy forests up to 50 metres tall, and 
perhaps taller. But with both optical and SAR 
(Synthetic Aperture Radar) satellite 
instruments, this correlation becomes flat when 
stem volume reaches a certain threshold 
(Næsset 2009; Gracia at al. 2010). Due to this 
saturation effect, estimation based on optical 
imagery may lead to significant 
underestimation of carbon stock in areas with 
high above-ground biomass concentrations. In 
this study, the poor correlation of the satellite 
data caused underestimation of biomass in 
areas with total volume above 250m3/ha 
(Figure 8). 
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Figure 8: Total volume estimated using satellite data 
and surrogate plots. The ability of satellite signal to 

predict biomass saturated at about 250m3/ha. 

Two-phase sampling with LiDAR attains a 
relative RMSE of 25 to 35 percent in above-
ground biomass already on an area of 0.5 ha, 
whereas alternative methods, such as National 
Forest Inventories based on permanent 

sample plots, optical satellite imagery, and k-NN 
estimation or visual inspection attain this error level 
only on areas of 100 ha or even more. Such high 
spatial resolution is crucial for awarding REDD 
credits to local forest owners. The integrated 
methodology provides an opportunity to estimate 
change in carbon stock at greater aerial extent, 
and with high spatial resolution, high accuracy, and 
at relatively low cost (Asner et al. 2010). Accurate, 
high-resolution, and temporally consistent biomass 
and carbon stock estimates are needed for REDD-
plus monitoring, reporting and verification in line 
with Tier 3 requirements. Thus, the approach 
integrating LiDAR, field plot, and satellite data will 
play a significant role in the future (McNally et al. 
2009).  
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